865 research outputs found

    Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species

    Get PDF
    Citrus has long been regarded as a food and also as a medicinal plant. Fruits of four species of citrus which are commonly available in Malaysia, namely C. hystrix (wild lime), C. aurantifolia (common lime), C. microcarpa (musk lime) and C. sinensis (orange), were chosen to investigate their total phenolic, flavonoid and hesperidine contents. Additionally, the antioxidant activities were also determined by ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity. C. hystrix had the highest flavonoid and total phenolic contents while C. aurantifolia had the highest hesperidine content. The antioxidant activity of C. hystrix was highest determined by FRAP and DPPH assays compared to other citrus species. A strong positive correlation of R2 = 0.9090 between total phenolic content and FRAP values was observed in this investigation. This study indicated that C. hystrix exhibited the highest antioxidant, flavonoid and phenolic content and can be used potentially as a readily accessible source of natural antioxidant

    New strategies for developing cardiovascular stent surfaces with novel functions (Review)

    Get PDF
    published_or_final_versio

    Targeted suicide gene transfections reveal promising results in nu/nu mice with aggressive neuroblastoma

    Get PDF
    Neuroblastoma represents the third most common malign neoplasm occurring in children and the most common in newborn. Although mortality in childhood cancer declined in the last decade, high-risk patients have poor prospects, due to the aggressiveness of the cancer. In the recent past, we underlined the potential of sapofectosid as novel and efficient transfection enhancer, demonstrating non-toxic gene delivery, but its value in tumor therapies has yet to be elucidated. A suicide gene, coding for saporin, a ribosome-inactivating protein type I, was incorporated into targeted, peptide-based nanoplexes. The nanoplexes were characterized for their size, zeta potential and appearance by electron microscopy. Gene delivery was observed via confocal imaging. In vitro transfections were conducted to monitor the real-time cell viability. After initial tolerability studies, NMRI nu/nu-mice bearing tumors from Neuro-2A-Luc-cells (murine neuroblastoma cells, transduced with a luciferase gene), were treated with targeted nanoplexes (30 μg saporin-DNA i.v./treatment) and sapofectosid (30 μg s.c. treatment). The treatment was compared to a vehicle (PBS) control and treatment without sapofectosid in terms of body weight, tumor growth and integrated density of tumor luminescence. The study revealed an anti-tumoral effect of the sapofectosid mediated gene therapy in the Neuro-2A-tumor model. The treatments were well tolerated by the animals indicating the applicability of this approach. With these results, we were able to proof the efficacy of a therapy, consisting of targeted suicide gene nanoplexes and sapofectosid, a novel and potent transfection enhancer. This study points out the enormous value for future targeted cancer and gene therapies

    Finding Semantically Related Videos in Closed Collections

    Get PDF
    Modern newsroom tools offer advanced functionality for automatic and semi-automatic content collection from the web and social media sources to accompany news stories. However, the content collected in this way often tends to be unstructured and may include irrelevant items. An important step in the verification process is to organize this content, both with respect to what it shows, and with respect to its origin. This chapter presents our efforts in this direction, which resulted in two components. One aims to detect semantic concepts in video shots, to help annotation and organization of content collections. We implement a system based on deep learning, featuring a number of advances and adaptations of existing algorithms to increase performance for the task. The other component aims to detect logos in videos in order to identify their provenance. We present our progress from a keypoint-based detection system to a system based on deep learning

    Bioavailability in soils

    Get PDF
    The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr

    UPF1, a Conserved Nonsense-Mediated mRNA Decay Factor, Regulates Cyst Wall Protein Transcripts in Giardia lamblia

    Get PDF
    The Giardia lamblia cyst wall is required for survival outside the host and infection. Three cyst wall protein (cwp) genes identified to date are highly up-regulated during encystation. However, little is known of the molecular mechanisms governing their gene regulation. Messenger RNAs containing premature stop codons are rapidly degraded by a nonsense-mediated mRNA decay (NMD) system to avoid production of non-functional proteins. In addition to RNA surveillance, NMD also regulates thousands of naturally occurring transcripts through a variety of mechanisms. It is interesting to know the NMD pathway in the primitive eukaryotes. Previously, we have found that the giardial homologue of a conserved NMD factor, UPF1, may be functionally conserved and involved in NMD and in preventing nonsense suppression. In this study, we tested the hypothesis that NMD factors can regulate some naturally occurring transcripts in G. lamblia. We found that overexpression of UPF1 resulted in a significant decrease of the levels of CWP1 and cyst formation and of the endogenous cwp1-3, and myb2 mRNA levels and stability. This indicates that NMD could contribute to the regulation of the cwp1-3 and myb2 transcripts, which are key to G. lamblia differentiation into cyst. Interestingly, we also found that UPF1 may be involved in regulation of eight other endogenous genes, including up-regulation of the translation elongation factor gene, whose product increases translation which is required for NMD. Our results indicate that NMD factor could contribute to the regulation of not only nonsense containing mRNAs, but also mRNAs of the key encystation-induced genes and other endogenous genes in the early-diverging eukaryote, G. lamblia

    Expression of ezrin is associated with invasion and dedifferentiation of hepatitis B related hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is the fifth most common malignancy in the world and constitutes the leading cause of cancer-related death among men, and second among women in Taiwan. Liver cirrhosis and HCC are relatively prevalent, and 80% to 85% of the patients with these conditions have positive results for hepatitis B surface antigen in Taiwan. Only 5% of the general population is seronegative for all hepatititis B virus (HBV) markers. This is the first study to determine the role of ezrin upon HBV HCC cell and patients with HBV HCC undergoing hepatectomy</p> <p>Methods</p> <p>Immunohistochemical study with ezrin in 104 human HBV-HCC cases were carried out to investigate its association with the clinicopathological features and the outcomes of 104 HBV-HCC patients undergoing hepatetomy. In addition, DNA constructs including the wild type ezrin (wt-ezrin) and mutant ezrin Tyr353 (Y353) were transfected into Hep3B cell to study its role in tumor invasion and differentiation.</p> <p>Results</p> <p>HBV HCC patients with ezrin over-expression independently have smaller tumor size, cirrhotic liver background, poor tumor differentiation, and more vascular invasion. Ezrin expression status has no impact on survival for HBV-HCC patients undergoing hepatectomy. The in vitro assay showed that wt-ezrin Hep3B cells have a significant higher level of AFP secretion and higher invasion ability as compared with the control and Y353- ezrin Hep3B cells.</p> <p>Conclusion</p> <p>Ezrin over-expression contributed to de-differentiation and invasion of HBV-HCC cell. HBV-HCC patients with ezrin over-expression were independently associated with tumor with smaller size, cirrhotic liver background, poor differentiation, and vascular invasion.</p

    Capillary electrophoretic separation of nanoparticles

    Get PDF
    In the present work, CdSe nanocrystals (NCs) synthesized with a trioctylphosphine surface passivation layer were modified using amphiphilic molecules to form a surface bilayer capable of providing stable NCs aqueous solutions. Such modified nanocrystals were used as a test solute in order to analyze new electrophoretic phenomena, by applying a micellar plug as a separation tool for discriminating nanocrystals between micellar and micelle-free zones during electrophoresis. The distribution of NCs between both zones depended on the affinity of nanocrystals towards the micellar zone, and this relies on the kind of surface ligands attached to the NCs, as well as electrophoretic conditions applied. In this case, the NCs that migrated within a micellar zone can be focused using a preconcentration mechanism. By modifying electrophoretic conditions, NCs were forced to migrate outside the micellar zone in the form of a typical CZE peak. In this situation, a two-order difference in separation efficiencies, in terms of theoretical plates, was observed between focused NCs (N ~ 107) and a typical CZE peak for NCs (N ~ 105). By applying the amino-functionalized NCs the preconcentration of NCs, using a micellar plug, was examined, with the conclusion that preconcentration efficiency, in terms of the enhancement factor for peak height (SEFheight) can be, at least 20. The distribution effect was applied to separate CdSe/ZnS NCs encapsulated in silica, as well as surface-modified with DNA, which allows the estimation of the yield of conjugation of biologically active molecules to a particle surface
    corecore